Chapter 8

# Sound propagation in solids

### Complément : A video (in french) about sound waves in solids (with some fun science experiments)

Ondes sonores dans les solides

### Fondamental : Infinite chain of oscillators and approximation of continuous medium

To study the propagation of sound waves in solids, the following model is used (see figure) :

The solid consists of an endless chain of punctual atoms, mass , interconnected by springs of spring constant and their original length (corresponding to the inter-atom distance at equilibrium).

The elastically coupled atom chain (linear restoring) by springs is a simple model to describe the spread of small vibratory motions in a solid, that is to say, the propagation of sound in a solid.

The latter is in fact composed of regular stacks of atoms (ions or molecules).

Forces restoring an atom to its equilibrium position may be modeled, in the linear term, by elastic restoring, to the extent that the amplitudes of vibration of the atoms are low (it is assumed here that the solid is homogeneous and isotropic).

Infinite chain of oscillators

The movement of the ensemble occurs without friction along the axis (Ox).

Atoms move slightly about their respective equilibrium positions, which can identify the form .

We reference the positions of the atoms out of equilibrium by their abscissa :

Where the displacement remains low with respect to .

The second Newton's law applied to the rank atom provides, in projection :

The distance inter-atom is of the order of , distance much smaller than the characteristic distances of the propagation phenomena that is being studied, in particular the wavelength of vibration (of the order of at ). Therefore, changes very little over the distance .

It will thereby define a continuous function of as follows : (approximation of continuous medium)

It comes then (Taylor-Young expansion of the second order) :

And the equation of motion becomes :

And :

This is the d'Alembert wave equation, already obtained in the chapter on "Electromagnetic waves in vacuum".

We know that it is associated with a wave phenomenon of celerity .

This speed should not be confused with the speed of longitudinal movement of the atoms .

The waves are longitudinal here because the movement of atoms is in the direction of propagation.

### Complément :

Longitudinal waves

Mechanical waves are waves which propagate through a material medium (solid, liquid, or gas) at a wave speed which depends on the elastic and inertial properties of that medium.

There are two basic types of wave motion for mechanical waves : longitudinal waves and transverse waves.

The animations demonstrate both types of wave and illustrate the difference between the motion of the wave and the motion of the particles in the medium through which the wave is travelling.

### Fondamental : Relationship to Young's modulus

Phenomenological Hooke's law :

Needed force perpendicular to a surface of a solid to cause a displacement is :

Where denotes Young's modulus.

can be expressed in terms of microscopic quantities defined above ( , and ).

Three-dimensional solid model

For this, consider a three-dimensional solid model consisting of chains of atoms associated in parallel such that at equilibrium the atoms are located at the summits of a cubic lattice nearest distance between lattice points and axis (Ox), (Oy) and (Oz).

In such a network, each cube has side contains atoms placed on its summits, each atom being common to cubes that touch at this point.

It is therefore atom of mass per cub of volume , which allows to express the density of the solid :

We consider a deformation of the solid along (Ox) as the atoms located in at equilibrium are in in the presence of the deformation.

is a surface of this solid cut in the plane.

The force exerted by the atom of a string on the atom  is :

The surface contains chains of atoms playing the same role.

So the force exerted by the part of the right side of on the part of the left side of is :

In the approximation of continuous medium :

It is thus demonstrated Hooke's law, with the Young's modulus :

It is noted that is equivalent to a force by a surface or a pressure.

The sound propagation speed in the solid can be expressed in terms of  :

Relations :

finally give :

### Fondamental : Mesoscopic study

One can get the d'Alembert equation by direct mesoscopic study of elastic material studied.

For this, we take a slice of material of thickness , surface and therefore mass .

It undergoes, according to Hooke's Law, a force at  and by action and reaction, a force at (the differential element for forces is not related to the elementary thickness , but the elementary surface ).

The Newton's second law provides :

Where the wave equation :

Numerical applications :

For and at , was at , the rank of velocity magnitude of acoustic waves of waves in a solid.