Chapter 11

# Electromagnetic waves in metals, skin effect

## Rappel : The displacement current in a ohmic conductor

The Maxwell-Ampere equation is given by the local Ohm law :

We denote the time of evolution of distribution (D) (its evolutionary period).

One can compare the conduction current with the displacement current :

For the copper of conductivity :

This ratio is about of , with in .

Thus, even if is about (or a frequency ) :

Therefore, for the evolution regimes justifying the use of Ohm's law, the displacement current is within the ohmic conductor, negligible compared to the conduction current.

The Maxwell-Ampere equation is then :

## Rappel : Electrical neutrality

We assume that at the instant , there is a point M inside a conductor of a volume charge .

How does this volume charge vary over time ?

The Maxwell-Gauss equation, Ohm's law and the local charge conservation :

possible to write :

By integration :

For copper :

Very quickly, the conductor becomes neutral in volume :

Thus, as in stationary state, charges accumulate in the immediate vicinity of the surface of a conductor, hence the importance of the concept of surface charge .

## Attention : Maxwell equations in a conductor

Finally, as part of QSRA (quasi – stationary regime approximation ), the electromagnetic field satisfies the Maxwell equations "simplified" the following :

Thus, in a conductor, the QSRA differs only from the steady state modes by the inclusion of the induction phenomena (Maxwell-Faraday equation).

## Complément : Nodes law in the case of QSRA

Since , the conservation equation of the electric charge leads (inside the conductor) to :

The flux of the volume current vector is conserved, resulting in the validity of the law of branches and nodes within the QSRA.

Remark :

and should not be confused : in the conductor, which remains globally neutral, .

By cons, the charge carriers, whose charge distribution is , contribute to the current density vector according to the relation :

## Fondamental : Skin effect

The wave propagation equation of the electric field is :

It's an equation of type "diffusion", resulting in conductive heat transfer.

We are looking for complex solutions of the form :

Either :

We denote :

Then, removing the solution which diverges in the metal (It is assumed that the Oz axis is oriented towards the inside of metal from to infinity), and denoting the skin thickness :

We obtain :

The field propagates in the metal but being attenuated by a factor , called skin depth : corresponds to the order of magnitude of the penetration depth of the wave in the metal.

The higher the conductivity of the material and the wave frequency, the lower this thickness will be.

The wave is absorbed here due to the Joule effect in the conductor, to a thickness of about several .

Considering frequency electromagnetic wave on the order of , is about .

This skin effect causes the decrease of the current density as one moves away from the periphery of the conductor and leads to an increase of the resistance of the conductor.

Previous
Speed of propagation of energy
Next
Reflection of an electomagnetic wave on a non perfect metal